Cash Award question of July 2023
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In AABC, D is a point on BC such that BD: DC = 1:2. E is a point on
AB. DE & CA produced meet at F. CE meets AD at H and CE produced
meets FB at G. BH produced meets FC at K. Prove: GK || BC.
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Author's Solution

The author is giving two solutions to this problem. & K
Solution: 1

In AABC, CE, BK & AD are cevians concurrent at H.
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For AABC, DEF is a transversal,
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In AFBC,FD,CG & BA are cevians concurrent at E.
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& GK || BC --=======-mmmemmmmeeeeeeee Proved.



Solution : 2

Let CK=mAK
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In AABC,AD, BK & CE are cevians concurrent at H.
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For AFBC, FD, BA & CG are cevians concurrent at E and AD cuts CG at H.
Therefore, as per concurrency theorem, (the statement and proof of the
concurrency theorem is available in this website vide page no-9 of the book
"The Geometry of Concurrency", put up in this site),
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