Cash Award question of July 2023

In $\triangle A B C, D$ is a point on $B C$ such that $B D: D C=1: 2$. E is a point on $A B$. DE \& CA produced meet at F. CE meets $A D$ at H and CE produced meets FB at G. BH produced meets FC at K. Prove: GK || BC.

Question framed by
Dr. M. Raja Climax
Founder Chairman
CEOA Group of Instructions
Madurai, India

Author's Solution

The author is giving two solutions to this problem.

Solution: 1

In $\triangle A B C, C E, B K \& A D$ are cevians concurrent at H .
\therefore As per Ceva's theorem, $\frac{B D}{D C} \times \frac{C K}{K A} \times \frac{A E}{E B}=1$
For $\triangle A B C, D E F$ is a transversal,
As per Menelaus theorem, $\frac{B D}{D C} \times \frac{C F}{F A} \times \frac{A E}{E B}=1$
(1) \& (2) $\rightarrow \frac{C K}{K A}=\frac{C F}{F A}=m \quad$ (say)
$\mathrm{m}=\frac{\mathrm{CK}+\mathrm{CF}}{\mathrm{KA}+\mathrm{FA}}=\frac{2 \mathrm{CK}+\mathrm{KF}}{\mathrm{KF}} \quad$ [Componendo-Dividendo Rule]
$m-1=\frac{2 C K+K F-K F}{K F}=\frac{2 C K}{K F}$
$\Rightarrow \frac{C K}{K F}=\frac{(m-1)}{2}$
(3) $\rightarrow \frac{C F}{F A}=m$
$\therefore \frac{C F}{F A}-1=m-1$
$\frac{C A}{A F}=(m-1)$
In $\triangle F B C, F D, C G \& B A$ are cevians concurrent at E .
$\therefore \frac{B D}{D C} \times \frac{C A}{A F} \times \frac{F G}{G B}=1$
(5) \& (6) \rightarrow
$\frac{1}{2} \times(m-1) \times \frac{F G}{G B}=1 \quad\left[\because \frac{B D}{D C}=\frac{1}{2}\right.$ given $]$
$\Rightarrow \frac{G B}{G F}=\frac{(m-1)}{2}$.
(4) \& (7) $\rightarrow \frac{C K}{K F}=\frac{B G}{G F}$
$\therefore G K \| B C$ Proved.

Solution : 2

Let $\mathrm{CK}=\mathrm{mAK}$
$\frac{C K}{A K}=m$
In $\triangle A B C, A D, B K \& C E$ are cevians concurrent at H .
$\frac{C K}{A K} \times \frac{A E}{E B} \times \frac{B D}{D C}=1$
$m \times \frac{A E}{E B} \times \frac{1}{2}=1 \quad\left(\frac{B D}{D C}=\frac{1}{2}\right.$ given $)$
$\Rightarrow \frac{A E}{E B}=\frac{2}{m}$ \qquad
For $\triangle A B K, \mathrm{EHC}$ is a transversal.
$\therefore \frac{A E}{E B} \times \frac{B H}{H K} \times \frac{K C}{C A}=1$
$\frac{2}{m} \times \frac{B H}{H K} \times \frac{m}{m+1}=1$
$\frac{B H}{H K}=\frac{m+1}{2}$

For $\triangle A E C, \mathrm{KHB}$ is a transversal.
$\therefore \frac{C K}{K A} \times \frac{A B}{B E} \times \frac{E H}{H C}=1$
(2) $\rightarrow \frac{A B}{B E}=\frac{m+2}{m}$
(4) \& (5) \rightarrow
$\frac{\not h \times(m+2)}{\not n h^{\prime}} \times \frac{E H}{H C}=1$
$\frac{E H}{H C}=\frac{1}{(m+2)}$

For $\triangle F B C, F D, B A \& C G$ are cevians concurrent at E and AD cuts CG at H .
Therefore, as per concurrency theorem, (the statement and proof of the concurrency theorem is available in this website vide page no-9 of the book "The Geometry of Concurrency", put up in this site),
$\frac{E H}{H C}=\frac{E G}{G C}$
$\frac{E H+E G}{H C+G C}$ (Componendo-Dividendo Rule)
(6) $\&(7) \rightarrow \frac{1}{m+2}=\frac{E H+E G}{H C+G C}=\frac{G H}{2 H C+G H}$
$\Rightarrow \frac{2 H C+G H}{G H}=(m+2)$
$\frac{2 H C+G H}{G H}-1=m+2-1$
$\frac{2 H C}{G H}=m+1$
$\frac{H C}{G H}=\frac{m+1}{2}$
(3) \& (8) \rightarrow
$\frac{B H}{H K}=\frac{C H}{H G}$
$\therefore G K \| B C$ -
Proved

