Cash Award question of July 2023

In \triangle ABC, D is a point on BC such that BD: DC = 1:2. E is a point on AB. DE & CA produced meet at F. CE meets AD at H and CE produced meets FB at G. BH produced meets FC at K. Prove: GK || BC.

Question framed by Dr. M. Raja Climax Founder Chairman CEOA Group of Instructions Madurai, India

Author's Solution

The author is giving two solutions to this problem.

Solution : 1

In $\triangle ABC$, CE, BK & AD are cevians concurrent at H. : As per Ceva's theorem, $\frac{BD}{DC} \times \frac{CK}{KA} \times \frac{AE}{ER} = 1$ ------(1) For $\triangle ABC$, *DEF* is a transversal, As per Menelaus theorem, $\frac{BD}{DC} \times \frac{CF}{FA} \times \frac{AE}{FB} = 1$ ------ (2) (1) & (2) $\rightarrow \frac{CK}{KA} = \frac{CF}{FA} = m$ (say) ------ (3) $m = \frac{CK+CF}{KA+FA} = \frac{2CK+KF}{KF}$ [Componendo-Dividendo Rule] $m-1 = \frac{2CK + KF - KF}{KF} = \frac{2CK}{KF}$ $\Longrightarrow \frac{CK}{\kappa_F} = \frac{(m-1)}{2} \qquad (4)$ $(3) \longrightarrow \frac{CF}{FA} = m$ $\therefore \frac{CF}{EA} - 1 = m - 1$ $\frac{CA}{AE} = (m-1)$ (5) In ΔFBC , FD, CG & BA are cevians concurrent at E. $\therefore \frac{BD}{DC} \times \frac{CA}{AE} \times \frac{FG}{CE} = 1 \quad \text{(6)}$ $(5) \& (6) \rightarrow$ $\frac{1}{2} \times (m-1) \times \frac{FG}{GB} = 1$ [: $\frac{BD}{DC} = \frac{1}{2}$ given] $\Rightarrow \frac{GB}{GF} = \frac{(m-1)}{2}$ (7) (4) & (7) $\rightarrow \frac{CK}{KE} = \frac{BG}{CE}$ ∴ *GK* || *BC* ----- Proved.

Solution : 2

Let CK=mAK

 $\frac{CK}{AK} = m$ (1)

In $\triangle ABC$, AD, BK & CE are cevians concurrent at H.

 $\frac{CK}{AK} \times \frac{AE}{EB} \times \frac{BD}{DC} = 1$ $m \times \frac{AE}{EB} \times \frac{1}{2} = 1 \qquad (\frac{BD}{DC} = \frac{1}{2} given)$ $\Rightarrow \frac{AE}{EB} = \frac{2}{m} \qquad (2)$

For ΔABK , EHC is a transversal.

$$\therefore \frac{AE}{EB} \times \frac{BH}{HK} \times \frac{KC}{CA} = 1$$

$$\frac{2}{m} \times \frac{BH}{HK} \times \frac{m}{m+1} = 1$$

$$\frac{BH}{HK} = \frac{m+1}{2}$$
(3)

For $\triangle AEC$, KHB is a transversal.

$$\therefore \frac{CK}{KA} \times \frac{AB}{BE} \times \frac{EH}{HC} = 1 - \dots (4)$$

$$(2) \rightarrow \frac{AB}{BE} = \frac{m+2}{m} - \dots (5)$$

$$(4) \& (5) \rightarrow$$

$$\frac{m \times (m+2)}{m} \times \frac{EH}{HC} = 1$$

$$\frac{EH}{HC} = \frac{1}{(m+2)} - \dots (6)$$

For ΔFBC , *FD*, *BA* & *CG* are cevians concurrent at E and AD cuts CG at H. Therefore, as per concurrency theorem, (the statement and proof of the concurrency theorem is available in this website vide page no-9 of the book "The Geometry of Concurrency", put up in this site),

$$\frac{EH}{HC} = \frac{EG}{GC}$$

 $\frac{EH + EG}{HC + GC} \text{ (Componendo-Dividendo Rule)} -----(7)$ $(6) \& (7) \rightarrow \frac{1}{m+2} = \frac{EH + EG}{HC + GC} = \frac{GH}{2HC + GH}$ $\Rightarrow \frac{2HC + GH}{GH} = (m+2)$ $\frac{2HC + GH}{GH} - 1 = m + 2 - 1$ $\frac{2HC}{GH} = m + 1$ $\frac{HC}{GH} = \frac{m+1}{2} ----(8)$ $(3) \& (8) \rightarrow$ $\frac{BH}{HK} = \frac{CH}{HG}$ $\therefore GK \parallel BC ----Proved$
